Lecture 5 - January 24

Math Review

Logical Quantifications: Proof Strategies Exercises

Lab1 Part 2 tutorial videos released

- + ≈ 2 hours
 - * debugging using labels, error trace, state graph
 - * PlusCal vs. Auto-Translated TLA+ Predicates
- Optional Textbook for Model Checking and Program Verification
 Logic in Computer Science:
 Modelling and reasoning about systems
 by M. Huth and M. Ryan

How to disprove $\forall i \bullet R(i) \Rightarrow P(i) ?$ (1) Give a witness/conner-excuple : $R(\tau) \land \neg R(\tau)$ How to disprove $\exists i \bullet R(i) \land P(i) ? s.t. R(\tau) might to be$ $how <math>\neg R(\tau) (2 empty average)$ $R(\tau) \land \neg R(\tau) \Rightarrow for all <math>\tau$ satisfying R_{3} they dolt satisfy P posed

Predicate Logic: Exercise 1

Consider the following predicate:

 $\forall \mathbf{x}, \mathbf{y} \bullet \mathbf{x} \in \mathbb{N} \land \mathbf{y} \in \mathbb{N} \Rightarrow \mathbf{x}^* \mathbf{y} > \mathbf{0}$

Choose all statements that are correct.

3. It is not a theorem, witnessed by (5, 0). $(5 \in A \land D \in A)$ (4. It is not a theorem, witnessed by (12, -2). 5. It is not a theorem, witnessed by (12, 13). (7) (12) (

 $12 \in \mathbb{N} \land [-2 \in \mathbb{N}] \Rightarrow |2 \times -2 > 0 = (\overline{D}, =) |2 \times |3 > 0$

Consider the following predicate: $\forall x, y \bullet x \in \mathbb{N} \land y \in \mathbb{N} \Rightarrow x * y * 0$

Choose <u>all</u> statements that are correct.

- An axion is assumed to be true, with no need for proofs. A theorem is a Boolean expression that requires a proof. 4 lemma 6 sub-theorems to help.

Predicate Logic: Exercise 2

Consider the following predicate:

 $\exists x, y \bullet x \in \mathbb{N} \land y \in \mathbb{N} \land x^* y > 0$

Choose all statements that are correct.

- 1. It is a theorem, provable by (5, 4). $\wedge 5 \neq 4 \in \mathbb{N}$
- 2. It is a theorem, provable by (2, 3). χ 3. It is a theorem, provable by (-2, -3). [-2 $\in N$]
 - 4. It is not a theorem, witnessed by (5, 0).
 - 5. It is not a theorem, witnessed by (12, -2).
 - 6. It is not a theorem, witnessed by (12, 13).

Logical Quantifications: Conversions

R(x): x ∈ 4315_class P(x): x receives A+

