Lecture 5 - January 24

Math Review
Logical Quantifications: Proof Strategies
Exercises

Announcement

- Lab1 Part 2 tutorial videos released
$+\approx 2$ hours
* debugging using labels, error trace, state graph
* PlusCal vs. Auto-Translated TLA+ Predicates
- Optional Textbook for Model Checking and Program Verification Logic in Computer Science:
Modelling and reasoning about systems by M. Huth and M. Ryan

Logical Quantifiers: Examples
How to prove $\forall i \bullet R(i) \Rightarrow P(i)$?
(11) Assume $R(\bar{\tau})$, prove $P(\tau)$
(2) Pware $1 R(\tau)$ (\approx empty avray) e.g. $R(\tau) \triangleq$

How to prove $\exists i \bullet R(i) \wedge P(i)$?

(1) Frad a witness s.t. $R(\bar{i}) \wedge P(\bar{c})$

How to disprove $\forall i \bullet R(i) \Rightarrow P(i)$?
(1) Gine a witwess/coulniter-exanude : $R(\tau)$

nadler (1) Show $\neg R(\tau)(\approx$ empty awray $)$
(2) $R(\tau) \wedge \neg P(\tau) \leftrightarrow$ for all i satistifng R.

Prove/Disprove Logical Quantification

- Prove or disprove: $\forall x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \Rightarrow x>0$.

$$
x \in 1 . .10 \text {, each }>0
$$

- Prove or disprove: $\forall x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \Rightarrow x>1$.
witness : 2
- Prove or disprove that $\exists x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \wedge x>10$? max value is 10 but $10>10$ E.

Is the following statement correct:
10

- Prove or disprove: $\exists x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \wedge x>1$.

We can just gigue a witness $x=1$.
Not correct! ai \exists is tull but $x=1$ not a valid witness $(1>1 \equiv F)$.
$\exists x \cdot x \in \operatorname{lin} \leqslant x \leqslant 0 \Rightarrow \frac{x}{1}>1$

$$
\equiv \exists x \cdot \operatorname{Tme} \wedge(I)
$$

$$
\begin{aligned}
\substack{\text { Tu } \\
\text { Tr } \\
=P} & \forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x) \\
& \forall x \cdot P(x) \equiv \neg \forall x \cdot \neg P(x) .
\end{aligned}
$$

Predicate Logic: Exercise 1

$$
N=\{0,1, \cdots,+\infty\}
$$

Consider the following predicate:

$$
\forall x, y \bullet x \in \mathbb{N} \wedge y \in \mathbb{N} \Rightarrow x^{*} y>0
$$

Choose all statements that are correct.

1. It is a theorem, provable by $(5,4)$.
2. It is a theorem, provable by $(2,3)$.
3. It is not a theorem, witnessed by $(5,0)$. $5 \in N \wedge 0 \in \mathcal{A}$

X4. It is not a theorem, witnessed by $(12,-2)$.
$\Rightarrow 5 * 0>0$
F
5. It is not a theorem, witnessed by $(12,13)$.

$$
1 Z \in N \wedge-Z \in \mathbb{F} \Rightarrow 1 Z *-Z>0 \equiv(T) .
$$

$12 \in \mathbb{N} \wedge B \in N$
$\Rightarrow 12 * 13>0$

Consider the following predicate:

$$
\forall x, y \bullet x \in \mathbb{N} \wedge y \in \mathbb{N} \Rightarrow x^{*} y \times 0
$$

Choose all statements that are correct.

$$
\begin{aligned}
& x: 0,1,2, \cdots,+\infty \\
& y: 0,1,2, \cdots+\infty \\
& 0,
\end{aligned}
$$

Case 1

$$
\begin{aligned}
x>0, y>0 & \Rightarrow x * y>0 \\
& \Rightarrow x * y \geqslant 0
\end{aligned}
$$

Case 2 $x \geqslant 0, y \geqslant 0$ if one or both is 0

$$
\Rightarrow x * y=0 \Rightarrow x * y \geqslant 0 .
$$

- An axiom is assumed to be true, with no need for proofs.
- A theorem is a Boolean expression that requires a proof.
$\rightarrow \operatorname{lemma}$ \rightarrow sub-theorews to help

Predicate Logic: Exercise 2

Consider the following predicate:

$$
\exists x, y \bullet x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge x^{*} y>0
$$

Choose all statements that are correct.

1. It is a theorem, provable by $(5,4)$.

$$
\lambda 5 \in \mathbb{N} \wedge 4 \in \mathbb{N}
$$

1 . It is a theorem, provable by $(2,3)$. a, a a

2. It is a theorem, provable by $(2,3)$.
3. It is not a theorem, witnessed by $(5,0)$. $\frac{|-2 *-3>0|}{T}$
4. It is not a theorem, witnessed by $(12,-2)$.
5. It is not a theorem, witnessed by $(12,13)$.

Logical Quantifications: Conversions

$$
\begin{aligned}
& R(x): x \in 4315 \text { _class } \\
& P(x): x \text { receives A+ }
\end{aligned}
$$

$$
\begin{aligned}
& (\forall X \cdot R(X) \Rightarrow P(X)) \stackrel{\equiv}{\Leftrightarrow} \neg(\exists X \cdot R(X) \wedge \neg P(X)) \\
& \text { Equational Sryle } \\
& \forall x \cdot R(x) \Rightarrow P(x){ }^{Q(x)} \\
& \equiv\left\{A x \text { riom: } \forall x \cdot \theta(x) \equiv \frac{1(\exists x \cdot \neg \theta(x)\}}{}\right. \\
& \frac{\neg(\exists x \cdot \neg(R(x) \Rightarrow P(x)))}{\equiv\{\text { Known: } p \Rightarrow q \equiv \neg p \vee q\}} \\
& \neg(\exists x \cdot \neg(\neg R(x) \vee P(x))) \\
& \equiv\{\text { de Morgan: } 7(p, q) \equiv \text { Tp人 } 1 q\} \\
& \neg(\exists x \cdot \neg 7 R(x) \wedge \neg P(x)) \\
& \equiv \begin{array}{l}
\text { \{doulde negation: } 17 P \equiv P\} \\
\neg(\exists x . \quad R(x) \wedge \neg P(x))
\end{array} \\
& (\exists X \bullet R(X) \wedge P(X)) \Leftrightarrow \neg(\forall X \bullet R(X) \Rightarrow \neg P(X))
\end{aligned}
$$

